

EFFECT OF HOLE MOBILITY VARIATION ON SHORT CHANNEL EFFECTS IN NANOSCALE DOUBLE GATE FinFETs

¹**Nura, M. S.; ¹Babaji, G. and ¹Ali, M. H.**

¹Department of Physics, Bayero University, Kano, Nigeria.

*Corresponding author (Email: nmshehu.phy@buk.edu.ng. Phone: +2348038860203)

ABSTRACT

This work presents an investigation into the impact of hole mobility variations on short channel effects (SCEs) in different FinFETs using semiconductor fin materials. Using the PADRE simulator, we simulated FinFETs made of Gallium Arsenide (GaAs), Gallium Antimonide (GaSb), Gallium Nitride (GaN), and Silicon (Si). The study involved analyzing performance metrics, including Drain Induced Barrier Lowering (DIBL), Subthreshold Swing (SS), and Threshold Voltage roll-off. The study showed that variations in hole mobility do not significantly impact short channel issues in FinFETs. However, there is a notable shift in short channel effects observed in GaAs-FinFETs with higher hole mobilities. Despite consistent short channel effects, GaAs-FinFETs demonstrated superior performance in terms of DIBL with lowest value of 8.28 mV/V at hole mobilities of 1400 cm²/Vs and 1500 cm²/Vs, and threshold voltage with lowest value of 0.427 V at (100-1300) cm²/Vs. On the other hand, GaN-FinFET outperformed other FinFETs in terms of subthreshold swing by exhibiting lowest value of 63.95 mV/dec at hole mobilities of 1400 cm²/Vs and 1500 cm²/Vs. The study concludes that while variations in hole mobility do not significantly affect short channel issues in FinFETs, there is a distinct change observed in short channel effects in GaAs-FinFETs at higher hole mobilities. Understanding the relationship between hole mobility variations and short channel effects enables designers to optimize device structures and material choices for better overall performance.

Keywords: DIBL, FinFETs, GaAs, GaSb, Hole Mobility, SCEs,

1.0 Introduction

The pursuit of miniaturization in transistors is at the forefront of nanoscale technology, catalyzing transformative developments in the field of semiconductors [1-7], by facilitating the integration of hundreds of circuits on a single chip through Very Large Scale and Ultra-Large Scale Integrations. However, this reduction in the size of the transistor leads to the occurrence of some impediments to the operation of the MOSFET. These restrictions are known as short channel effects [8-14]. To tackle these challenges, a special structure called fin Field Effect Transistor standout to be a prospective electronic device [15-30] due to its improved scalability and ability to control the SCEs. The operational capabilities of nanoscale FinFETs are advancing to the point that quantum mechanical phenomena, such as quantum confinement effects, are becoming apparent [31-32]. This confinement alters the energy band structure of the material, leading to discrete energy levels and affecting electron mobility. In order to achieve greater downsizing and performance enhancement, it becomes important to investigate the delicate interplay between device dimensions, material characteristics, SCEs, and hole mobility in FinFET devices. The exploration of hole mobility in FinFET devices and its effects on short-channel effects is essential for optimizing device performance, reducing power consumption, and enabling further scaling of semiconductor technologies.

The impact of Short-Channel Effects (SCEs) on the performance of FinFETs has been reported in literature [33-40]. However, to the best of our knowledge no study has been reported on the effect of hole mobility on short channel effects.

This work aims at thoroughly investigating the impact of electron mobility variations on short channel effects in nanoscale double gate FinFET devices using Si, GaSb, GaN and GaAs as channel materials. The study focused on significant performance metrics: DIBL, SS, and threshold voltage roll-off, crucial in the determination of device performance. Simulations will be conducted using the PADRE Simulator, known for semiconductor device modeling. This research seeks to provide insights into optimizing FinFET performance and advancing semiconductor technology towards greater efficiency and functionality in nanoscale electronic devices.

1.1 Device Structure

Figure 1 shows the device structure of an n-channel double gate FinFET. The structure includes key components such as the source, drain, gate length (channel length), and channel width (fin width or fin thickness). Before forming the gate contact, the oxide is applied to the fin's top surface, as well as both sides of the side walls. The side wall's oxide thicknesses are T_{ox1} and T_{ox2} .

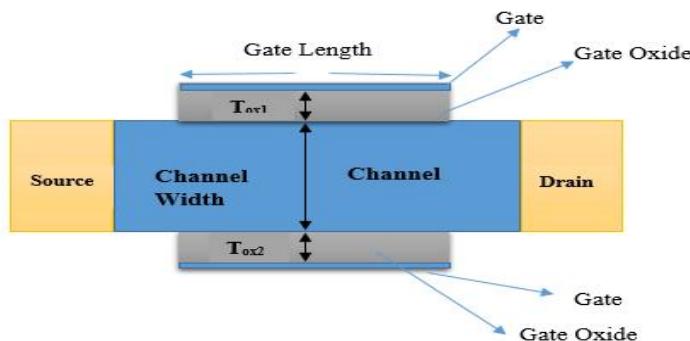


Figure 1. Two-Dimensional Double Gate FinFET

2. Materials and Method

This section describes the materials and the method that were used during the device simulation.

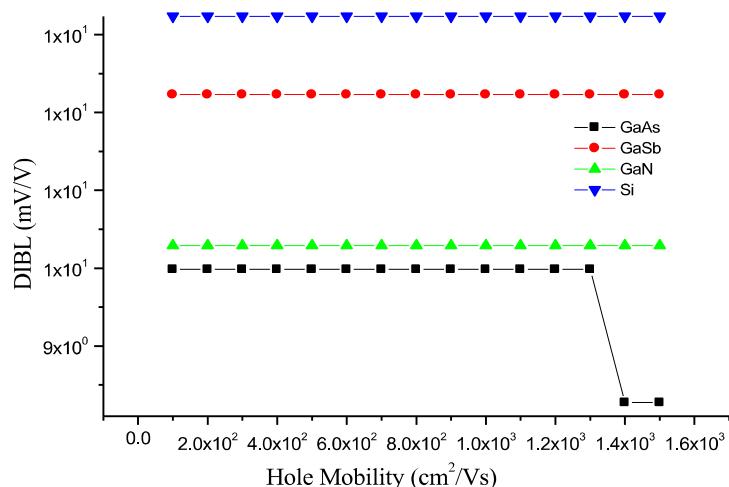
2.1 Materials

The materials used in this research are Si, GaAs, GaSb and GaN as fin (channel) materials, silicon dioxide (SiO_2) as the gate dielectric, Silicon as base substrate and MuGFET simulation tool.

2.2 Method

The device simulation was carried out using the PADRE simulator from the MuGFET tool. The effect of hole mobility on SCEs was examined in FinFETs using various semiconductor materials. The study focused on GaAs, GaSb, GaN, and Si FinFETs, analyzing significant performance metrics such as DIBL, SS, and threshold voltage roll-off. The oxide thickness employed was 2 nm, channel width was 10 nm, gate length was 45 nm, and hole mobility ranged from 100 to 1500 cm^2/Vs . During the simulation, the drain/source doping was set at $1 \times 10^{16} \text{ cm}^{-3}$ and the channel doping concentration was maintained at $1 \times 10^{19} \text{ cm}^{-3}$. While the gate bias was varied between 0 V and 1 V, and the drain bias was set between 0.05 V and 1 V. The parameters are listed in Table 1.

Table 1: Parameter Specifications used in this simulation


Parameter	Value
Gate Length	45 nm
Electron Mobility	(100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 150) cm ² /Vs
Channel Width	10 nm
Channel Doping Concentration	1×10^{16} cm ⁻³
Source/Drain Doping Concentration	1×10^{19} cm ⁻³
Drain Bias	0.05 V, 1.0 V
Gate Bias	0 V to 1.0 V

3. Results and Discussion

The effects of hole mobility on the three SCEs are presented here.

3.1 Impact of Hole Mobility Variations on DIBL

The impact of hole mobility variations on DIBL in DG-FinFET is presented in Figure 2 with diverse semiconductors as fin (channel) materials which include GaAs, GaSb, GaN and Si. Observations from the figure indicate that the four FinFETs maintained constant DIBL characteristics over the explored hole mobility range. This consistent trend indicates that DIBL is not significantly influenced by the variations in the hole mobility within the considered range. However, sudden fall in the DIBL value to 8.28 mV/v at hole mobilities of 1400 cm²/Vs and 1500 cm²/Vs shoots GaAs-FinFET to outperform the other three FinFETs in terms of DIBL. This change may suggest that GaAs exhibits unique characteristics or responses to variations in hole mobility compared to the other materials (GaSb, GaN, and Si).

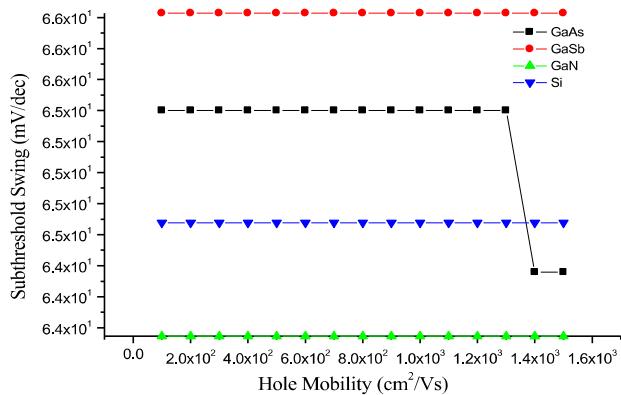


Figure 2. DIBL Vs Hole Mobility

3.2 Impact of Hole Mobility Variations on Subthreshold Swing

The impact of hole mobility variations on the subthreshold swing in nanoscale DG-FinFET employing GaAs, GaSb, GaN and Si as fin materials is presented in Figure 3. It can be observed from the figure that the four FinFETs maintained consistent subthreshold swing across the hole mobility range signifying that SS is not influenced by the variations of hole

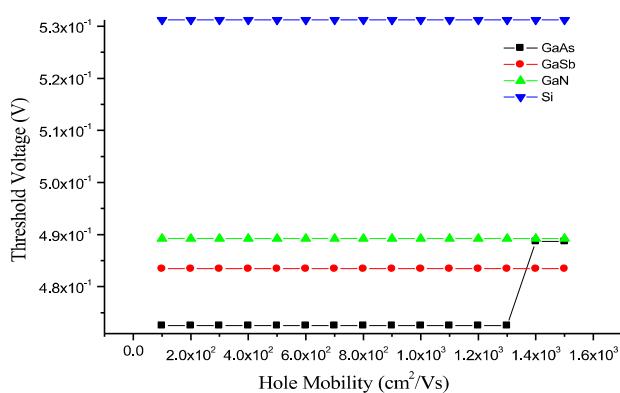

mobility for the range of values considered. However, there was a sudden fall in the SS observed in GaAs-FinFET at the hole mobilities of $1400 \text{ cm}^2/\text{Vs}$ and $1500 \text{ cm}^2/\text{Vs}$. This change may suggest that GaAs exhibits unique characteristics or responses to variations in hole mobility compared to the other materials (GaSb, GaN, and Si). On the other hand, GaN-FinFET exhibits constant least DIBL value of 63.95 mV/dec across the considered hole mobility range signifying its superiority in terms of SS compared with the other three FinFETs.

Figure 3. Subthreshold Swing Vs Hole Mobility

3.3 Impact of Hole Mobility Variations on Threshold Voltage

It can be observed from the figure that the four FinFETs maintained consistent subthreshold swing across the hole mobility range signifying that threshold voltage is not influenced by the variations of hole mobility for the range of values considered. However, there was a sudden rise in the threshold voltage observed in GaAs-FinFET at the hole mobilities of $1400 \text{ cm}^2/\text{Vs}$ and $1500 \text{ cm}^2/\text{Vs}$. This change may suggest that GaAs exhibits unique characteristics or responses to variations in hole mobility compared to the other materials (GaSb, GaN, and Si). GaAs-FinFET exhibits lowest threshold voltage of 0.47 V at the electron mobilities of $(100-1300) \text{ cm}^2/\text{Vs}$.

Figure 4. Threshold Voltage Vs Hole Mobility

4. Conclusion

We examined the complex relationship between hole mobility in fin materials and short channel effects in nanoscale double gate FinFETs, utilizing various semiconductor channel

materials including GaAs, GaSb, GaN, and Si. The study indicated that variations in hole mobility do not significantly impact short channel issues in FinFETs. However, there was a notable shift in short channel effects observed in GaAs-FinFETs with higher hole mobilities. Despite consistent short channel effects, GaAs-FinFETs demonstrated superior performance in terms of DIBL and threshold voltage compared to other FinFETs. Conversely, GaN-FinFETs outperformed other FinFETs in terms of subthreshold swing. The study concludes that while variations in hole mobility do not significantly affect short channel issues in FinFETs overall, there is a distinct change observed in short channel effects in GaAs-FinFETs at higher hole mobilities. This finding contributes to the advancement of FinFET technology, which is essential for achieving miniaturization and performance enhancement in semiconductor devices. Further research could explore the underlying mechanisms causing the sudden change in short channel effects in GaAs-FinFETs at higher hole mobilities. Investigating the specific factors, such as material properties or device characteristics that contribute to this phenomenon would provide valuable insights.

References

- [1] S. K. Dargar and V. M. Srivastava, "Performance Analysis of 10 nm FinFET with Scaled Fin-Dimension and Oxide Thickness," *2019 Int. Conf. Autom. Comput. Technol. Manag. ICACTM 2019*, pp. 1–5, 2019, doi: 10.1109/ICACTM.2019.8776710.
- [2] S. Mangesh, P. K. Chopra, and K. K. Saini, "Quantum effect in Nanoscale SOI FINFET device structure: A simulation study," *Proc. 2nd Int. Conf. 2017 Devices Integr. Circuit, DevIC 2017*, pp. 795–798, 2017, doi: 10.1109/DEVIC.2017.8074062.
- [3] P. Wambacq, B. Verbruggen, K. Scheir, J. Borremans, M. Dehan, D. Linten, V. D. Heyn, G. V. Plas, A. Mercha, V. Parvais, C. Gustin, V. Subramanian, N. Collaert, M. Jurczak and S. Decoutere, "The potential of FinFETs for analog and RF circuit applications," *IEEE Trans. Circuits Syst. I Regul. Pap.*, vol. 54, no. 11 SPEC. ISS., pp. 2541–2551, 2007, doi: 10.1109/TCSI.2007.907866.
- [4] E. H. Minhaj, S. R. Esha, M. M. R. Adnan, and T. Dey, "Impact of Channel Length Reduction and Doping Variation on Multigate FinFETs," *2018 Int. Conf. Adv. Electr. Electron. Eng. ICAEEE 2018*, pp. 1–4, 2019, doi: 10.1109/ICAEEE.2018.8642981.
- [5] S. Zhang, "Review of Modern Field Effect Transistor Technologies for Scaling," *J. Phys. Conf. Ser.*, vol. 1617, no. 1, 2020, doi: 10.1088/1742-6596/1617/1/012054.
- [6] K. VinayakPrakash, A. Kumar, and P. Jain, "Circumventing Short Channel Effects in FETs: Review," *Int. J. Comput. Appl.*, vol. 117, no. 17, pp. 24–30, 2015, doi: 10.5120/20648-3407.
- [7] D. Bhattacharya and N. K. Jha, "FinFETs: From devices to architectures," *Advances in Electronics*, vol. 2014, pp. 21–55, 2015, doi: 10.1017/CBO9781316156148.003.
- [8] R. M. Asif, S. U. Rehman, A. U. Rehman, M. Bajaj, S. Choudhury, and T. P. Dash, "A Comparative Study of Short Channel Effects in 3-D FinFET with High-K Gate Dielectric," *2021 Int. Conf. Adv. Power, Signal, Inf. Technol. APSIT 2021*, no. December, 2021, doi: 10.1109/APSIT52773.2021.9641388.
- [9] Ameer F. Roslan, F. Salehuddin, A.S.M. Zain, K.E. Kaharudin, H. Hazura, A.R. Hanim, S.K. Idris, B.Z. Zarina, and Afifah Maheran A.H, "30nm DG-FinFET 3D construction impact towards short channel effects," *Indones. J. Electr. Eng. Comput. Sci.*, vol. 12, no. 3, pp. 1358–1365, 2018, doi: 10.11591/ijeecs.v12.i3.pp1358-1365.
- [10] G. Saini and A. K Rana, "Physical Scaling Limits of FinFET Structure: A Simulation Study," *Int. J. VLSI Des. Commun. Syst.*, vol. 2, no. 1, pp. 26–35, 2011, doi: 10.5121/vlsic.2011.2103.
- [11] M. Kailasam and M. Govindasamy, "Impact of high-k gate dielectrics on short channel effects of dg n-fin fet," *Int. J. Sci. Technol. Res.*, vol. 9, no. 3, pp. 2023–2026, 2020.
- [12] M. Mustafa, T. A. Bhat, and M. R. Beigh, "Threshold Voltage Sensitivity to Metal Gate

Work-Function Based Performance Evaluation of Double-Gate n-FinFET Structures for LSTP Technology," *World J. Nano Sci. Eng.*, vol. 03, no. 01, pp. 17–22, 2013, doi: 10.4236/wjNSE.2013.31003.

[13] G. R. Murthy, S. Tiwari, and S. Marasu, "IMPACT OF DIELECTRIC MATERIALS ON FinFET CHARACTERISTICS AT 45nm USING SILVACO ATLAS 2-D SIMULATIONS," *Sci. Int. (Lahore)*, vol. 33, no. 1, pp. 61–64, 2021.

[14] S. Banerjee, E. Sarkar, and A. Mukherjee, "Effect of Fin Width and Fin Height on Threshold Voltage for Triple Gate Rectangular FinFET," *TTIC*, vol. 2, pp. 27–30, 2018.

[15] D. S. Bhargava, M. Sarumathi, and P. Venkatesh, "FinFET Technology : A Comparative Review of Traditional Transistors and FinFET based on performance metrics and physical dimensions," *Int. Journ. of Sci. Res in Comp. Sci. App. and Man. Stud.*, vol. 5, no. 6, 2016.

[16] Y. K. Å, K. Tsutsui, K. Kakushima, P. Ahmet, V. R. Rao, and H. Iwai, "Analysis of Threshold Voltage Variation in Fin Field Effect Transistors: Separation of Short Channel Effects," *Japanese Journal of Applied Physics*, vol. 044201, doi: 10.1143/JJAP.49.044201.

[17] Toshifumi Irisawa, Kimitoshi Okano, Takuya Horiuchi, Hiroshi Itokawa, Ichiro Mizushima, Koji Usuda, Tsutomu Tezuka, Naoharu Sugiyama, and Shin-ichi Takagi, "Electron mobility and short-channel device characteristics of SOI FinFETs with uniaxially strained (110) channels," *IEEE Trans. Electron Devices*, vol. 56, no. 8, pp. 1651–1658, 2009, doi: 10.1109/TED.2009.2024029.

[18] C.-H. Lin, R. Kambhampati, R. J. Miller, T. B. Hook, A. Bryant, W. Haensch, P. Oldiges, I. Lauer, T. Yamashita, V. Basker, T. Standaert, K. Rim, E. Leobandung, H. Bu, and M. Khare "Channel doping impact on FinFETs for 22nm and beyond," *Dig. Tech. Pap. - Symp. VLSI Technol.*, pp. 15–16, 2012, doi: 10.1109/VLSIT.2012.6242438.

[19] C. R. Manoj and R. Rao, "Impact of high-k gate dielectrics on the device and circuit performance of nanoscale FinFETs," *IEEE Electron Device Lett.*, vol. 28, no. 4, pp. 295–297, 2007, doi: 10.1109/LED.2007.892365.

[20] M. Poljak, V. Jovanović, and T. Suligoj, "Modeling study on carrier mobility in ultra-thin body FinFETs with circuit-level implications," *Solid. State. Electron.*, vol. 65–66, no. 1, pp. 130–138, 2011, doi: 10.1016/j.sse.2011.06.039.

[21] M. K. Rai, V. Narendar, and R. A. Mishra, "Significance of variation in various parameters on electrical characteristics of FinFET devices," *SCES 2014 Inspiring Eng. Syst. Glob. Sustain.*, vol. 1, pp. 2–7, 2014, doi: 10.1109/SCES.2014.6880096.

[22] V. Subramanian *et al.*, "Impact of fin width on digital and analog performances of n-FinFETs," *Solid. State. Electron.*, vol. 51, no. 4 SPEC. ISS., pp. 551–559, 2007, doi: 10.1016/j.sse.2007.02.003.

[23] R. S. Pal, S. Sharma, and S. Dasgupta, "Recent trend of FinFET devices and its challenges: A review," *2017 Conf. Emerg. Devices Smart Syst. ICEDSS 2017*, no. March, pp. 150–154, 2017, doi: 10.1109/ICEDSS.2017.8073675.

[24] Z. Lu and J. G. Fossum, "Short-channel effects in independent-gate FinFETs," *IEEE Electron Device Lett.*, vol. 28, no. 2, pp. 145–147, 2007, doi: 10.1109/LED.2006.889236.

[25] A. Kumar and S. S. Singh, "Optimizing FinFET parameters for minimizing short channel effects," *Int. Conf. Commun. Signal Process. ICCSP 2016*, pp. 1448–1451, 2016, doi: 10.1109/ICCP.2016.7754396.

[26] S. Xiong and J. Bokor, "Sensitivity of Double-Gate and FinFET Devices to Process Variations," *IEEE Trans. Electron Devices*, vol. 50, no. 11, pp. 2255–2261, 2003, doi: 10.1109/TED.2003.818594.

[27] S. Verma, S. L. Tripathi, and M. Bassi, "Performance Analysis of FinFET device Using Qualitative Approach for Low-Power applications," *Proc. 3rd Int. Conf. 2019 Devices Integr. Circuit, DevIC 2019*, no. August, pp. 84–88, 2019, doi: 10.1109/DEVIC.2019.8783754.

[28] W. P. Maszara and M. R. Lin, "FinFETs - Technology and circuit design challenges," *Eur. Solid-State Device Res. Conf.*, pp. 3–8, 2013, doi: 10.1109/ESSDERC.2013.6818808.

- [29] A. Priydarshi and M. K. Chattopadhyay, "Low-Power and High-Speed Technique for logic Gates in 20nm Double-Gate FinFET Technology," *J. Phys. Conf. Ser.*, vol. 755, no. 1, 2016, doi: 10.1088/1742-6596/755/1/012055.
- [30] S. Dwivedi and D. N. R. Prakash, "A Study on Recent Advancements in VLSI Technology using FinFETs," *Int. J. Innov. Res. Sci. Eng. Technol.*, vol. 12, no. 4, pp. 12788–12793, 2015, doi: 10.15680/IJIRSET.2015.0412120.
- [31] S. R. N. Yun, C. G. Yu, J. T. Park, and J. P. Colinge, "Quantum-mechanical effects in nanometer scale MuGFETs," *Microelectron. Eng.*, vol. 85, no. 8, pp. 1717–1722, 2008, doi: 10.1016/j.mee.2008.04.023.
- [32] E. M. Amin, M. Z. Baten, R. Islam, and Q. D. M. Khosru, "Quantum mechanical effect on determining threshold voltage of trigate FinFET using self-consistent analysis," *IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON*, no. 1, pp. 3–7, 2009, doi: 10.1109/TENCON.2009.5396110.
- [33] Ameer F. Roslan, F. Salehuddin, A.S.M. Zain, K.E. Kaharudin, I. Ahmad, H. Hazura, A.R. Hanim, S.K. Idris, "Comparative high-K material gate spacer impact in DG-finFET parameter variations between two structures," *Indones. J. Electr. Eng. Comput. Sci.*, vol. 14, no. 2, pp. 573–580, 2019, doi: 10.11591/ijeecs.v14.i2.pp573-580.
- [34] A. Mahmood, W. A. Jabbar, Y. Hashim, and H. Bin Manap, "Effects of downscaling channel dimensions on electrical characteristics of InAs-FinFET transistor," *Int. J. Electr. Comput. Eng.*, vol. 9, no. 4, pp. 2902–2909, 2019, doi: 10.11591/ijeece.v9i4.pp2902-2909.
- [35] E. Shang, Y. Ding, W. Chen, S. Hu, and S. Chen, "The Effect of Fin Structure in 5 nm FinFET Technology," *J. Microelectron. Manuf.*, vol. 2, no. 4, pp. 1–8, 2019, doi: 10.33079/jomm.19020405.
- [36] A. S. C. & S. M. M. A. M. Md. Javed Hossain, "Impacts of Variations in Channel Length, Width and Gate Work Function of Gan FinFET and Si-FinFET on Essential Electrical Parameters," *Int. J. Electr. Electron. Eng. Res.*, vol. 9, no. 2, pp. 29–42, 2019, [Online]. Available: <http://www.tjprc.org/publishpapers/2-15-1572850801-4.IJEEERDEC20194.pdf>.
- [37] I. P. Buryk, A. O. Golovnia, M. M. Ivashchenko, and L. V. Odnodvorets, "Numerical simulation of FinFET transistors parameters," *J. Nano- Electron. Phys.*, vol. 12, no. 3, pp. 3–7, 2020, doi: 10.21272/jnep.12(3).03005.
- [38] Y. Sun, X. Yu, R. Zhang, B. Chen, and R. Cheng, "The past and future of multi-gate field-effect transistors: Process challenges and reliability issues," *J. Semicond.*, vol. 42, no. 2, 2021, doi: 10.1088/1674-4926/42/2/023102.
- [39] S. E. Huang, W. X. You, and P. Su, "Mitigating DIBL and Short-Channel Effects for III-V FinFETs with Negative-Capacitance Effects," *IEEE J. Electron Devices Soc.*, vol. 10, pp. 65–71, 2022, doi: 10.1109/JEDS.2021.3133453.
- [40] D. Jena, S. Das, A. Dastidar, and I. Engineering, "Performance comparison of GaN and Si FinFETs," *Jetir*, vol. 9, no. 12, pp. 641–645, 2022.
- [41] N. El, B. Hadri, and S. Patanè, "Effects of High-k Dielectric Materials on Electrical Characteristics of DG n-FinFETs," *Int. J. Comput. Appl.*, vol. 139, no. 10, pp. 28–32, 2016, doi: 10.5120/ijca2016909385.
- [42] M. S. Islam, M. S. Hasan, M. R. Islam, A. Iskanderani, I. M. Mehedi, and M. T. Hasan, "Impact of Channel Thickness on the Performance of GaAs and GaSb DG-JLMOSFETs: An Atomistic Tight Binding based Evaluation," *IEEE Access*, vol. 9, pp. 117649–117659, 2021, doi: 10.1109/ACCESS.2021.3106141.
- [43] V. Kumar, R. Singh, R. Gupta, and R. Vaid, "Effect of High-k Gate Dielectric Materials on Electrical Characteristics of GaAs Channel Material Based Double Gate n-FinFET," *International Journal of Emerging Research in Management & Technology*, vol. 9359, no. 8, pp. 51–56, 2016.